Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 12: e17084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529311

RESUMO

Background: Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method: Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results: Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion: Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária/diagnóstico , Extratos Vegetais/uso terapêutico
2.
ACS Sens ; 9(3): 1458-1464, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446423

RESUMO

The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.


Assuntos
Artemisininas , Malária Falciparum , Ácidos Nucleicos Peptídicos , Humanos , Plasmodium falciparum/genética , Estreptavidina , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , RNA
3.
Mol Biochem Parasitol ; 258: 111617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554736

RESUMO

Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.


Assuntos
Antimaláricos , Metaloproteases , Plasmodium falciparum , Plasmodium falciparum/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Metaloproteases/metabolismo , Metaloproteases/genética , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética
4.
Microbiol Spectr ; 12(4): e0350023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363132

RESUMO

During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Artemisininas/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos , Proteínas de Protozoários/genética
5.
Ann Afr Med ; 23(1): 5-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358164

RESUMO

Malaria is a disease affecting millions of people, especially in Africa, Asia, and South America, and has become a substantial economic burden. Because malaria is contracted through the bite of a mosquito vector, it is very challenging to prevent. Bed nets and insect repellents are used in some homes; others do not have or use them even when available. Thus, treatment measures are crucial to controlling this disease. Artemisinin-based combination therapy (ACT) is currently the first-line treatment for malaria. ACT has been used for decades, but recently, there has been evidence of potential resistance. This threat of resistance has led to the search for possible alternatives to ACT. In sub-Saharan Africa, Azadirachta indica, or simply neem, is a plant used to treat a variety of ailments, including malaria. Neem is effective against one of the more deadly malaria parasites Plasmodium falciparum. Reports show that neem inhibits microgametogenesis of P. falciparum and interferes with the parasite's ookinete development. Although there is substantial in vitro research on the biological activity of A. indica (neem), there is limited in vivo research. Herein, we discuss the in vivo effects of neem on malaria parasites. With A. indica, the future of malaria treatment is promising, especially for high-risk patients, but further research and clinical trials are required to confirm its biological activity.


Résumé Le paludisme est une maladie qui touche des millions de personnes, notamment en Afrique, en Asie et en Amérique du Sud, et est devenu un problème économique majeur fardeau. Le paludisme étant contracté par la piqûre d'un moustique vecteur, il est très difficile à prévenir. Moustiquaires et insectifuges sont utilisés dans certaines maisons ; d'autres ne les possèdent pas ou ne les utilisent pas même lorsqu'ils sont disponibles. Les mesures thérapeutiques sont donc cruciales pour contrôler cette maladie. La thérapie combinée à base d'artémisinine (ACT) constitue actuellement le traitement de première intention contre le paludisme. L'ACT est utilisé depuis des décennies, mais récemment, il y a eu des preuves d'une résistance potentielle. Cette menace de résistance a conduit à la recherche d'alternatives possibles à l'ACT. En Afrique subsaharienne, Azadirachta indica, ou simplement neem, est une plante utilisée pour traiter diverses maladies, dont le paludisme. Le Neem est efficace contre l'un des des parasites du paludisme plus mortels, Plasmodium falciparum. Des rapports montrent que le neem inhibe la microgamétogenèse de P. falciparum et interfere avec le développement de l'ookinète du parasite. Bien qu'il existe d'importantes recherches in vitro sur l'activité biologique d'A. indica (neem), il existe la recherche in vivo est limitée. Nous discutons ici des effets in vivo du neem sur les parasites du paludisme. Avec A. indica, l'avenir du traitement du paludisme est prometteur, en particulier pour les patients à haut risque, mais des recherches et des essais cliniques supplémentaires sont nécessaires pour confirmer son activité biologique. Mots-clés: Azadirachta indica, paludisme, neem, Plasmodium falciparum.


Assuntos
Antimaláricos , Azadirachta , Malária Falciparum , Malária , Animais , Humanos , Extratos Vegetais/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , África Subsaariana , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico
6.
J Ethnopharmacol ; 325: 117839, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310984

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Djibouti was a country where malaria has been endemic for centuries. The local population use the plants as repellents or first aid for uncomplicated malaria. AIM OF THE STUDY: The aim was, for the first time, to collect and identify plants used by the local population to treat malaria and select the most interesting plants (those that are more commontly used, more available, and have fewer studies). These plants were evaluated for their antiplasmodial activity as well as their cytotoxicity on human cell lines for the most active ones. MATERIALS AND METHODS: A semi-structured questionnaire was developed for this study to collect information about the use and identity of botanical drugs used to treat malaria. The use-reports (percentage) of each plant were recorded to determine their use importance. Also, the availability status of the plants was assessed; and those in critical condition were discarded excluded from further study. Fifteen plants, out of the 41 listed, were extracted with hydro alcohol, ethyl acetate, and dichloromethane for biological testing. Chloroquine-resistant strain FcB-1 of P. falciparum and a human diploid embryonic lung cell line were used for the antiplasmodial test, and to assess the cytotoxicity for human cells respectively. Preliminary analysis of extract constituents was carried out using thin layer chromatography (TLC). RESULTS: This study identifies 41 plant taxa belonging to 32 families and records their use against malaria. Balanites rodunfolia, belonging to the Zygophyllaceae family, was the most commonly used plant, representing 44 % of use-reports. It was followed by Cadaba rodunfolia (15 %) from the Capparaceae family, and then the three species of Aloe: Aloe djiboutiensis (8.2 %), Aloe ericahenriettae (3.4 %), and Aloe rigens (3.4 %) from the Asphodelaceae family. The leaves are the most commonly used part of the plants to treat malaria, accounting for 76 % of usage. The preparation methods were decoction (52 %), maceration (29 %), and boiling (19 %). The administration routes were by oral (80 %), inhalation 19 %), and bathing (1 %). The best antiplasmodial activities were observed in the dichloromethane extracts of Cymbopogon commutatus and the ethyl acetate extracts of Aloe rigens and Terminalia brownii, with IC50 values of 9.8, 5, and 7.5 µg/mL, respectively. Their toxicity/activity levels were very favorable with selectivity indices of 5.6, 8.1, and 11.8 for C. commutatus, A. rigens, and T. Brownii, respectively. CONCLUSION: Forty-one species of botanical drugs were listed as being used to treat malaria in Djibouti. All fifteen selected species showed antiplasmodial activity (IC50 < 50 µg/mL). This work will help guide the valorization of botanical drugs used to treat malaria in Djibouti.


Assuntos
Aloe , Antimaláricos , Malária Falciparum , Malária , Plantas Medicinais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plantas Medicinais/química , Preparações Farmacêuticas , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Djibuti , Cloreto de Metileno/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
7.
J Biomol Struct Dyn ; 42(1): 101-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974933

RESUMO

The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Cymbopogon , Malária Falciparum , Malária , Antimaláricos/química , Cymbopogon/química , Simulação de Acoplamento Molecular , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
J Ethnopharmacol ; 321: 117394, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY: This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS: The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS: The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 µg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 µg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 µg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION: The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Metanol/uso terapêutico , Simulação de Acoplamento Molecular , Malária/tratamento farmacológico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Glucosídeos/uso terapêutico
9.
J Ethnopharmacol ; 322: 117595, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM: This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY: For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS: A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION: Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Plantas Medicinais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Brasil , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Malária/tratamento farmacológico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
10.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831282

RESUMO

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Assuntos
Anacardium , Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Plasmodium falciparum , Transcetolase/uso terapêutico , Peixe-Zebra , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/farmacologia
11.
Acta Parasitol ; 68(4): 793-806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603126

RESUMO

PURPOSE: The resistance of parasite to readily affordable antimalarial drugs, the high cost of currently potent drugs, and the resistance of vector mosquitoes to insecticides threaten the possibility of malaria eradication in malaria endemic areas. Due to the fact that quinine and artemisinin were isolated from plants sources, researchers have been encouraged to search for new antimalarials from medicinal plants. This is especially the case in Africa where a large percentage of the population depends on medicinal plant to treat malaria and other ailments. METHOD: In this study, we evaluated previously characterized Plasmodium-cidal compounds obtained from the African flora to identify their likely biochemical targets, for an insight into their possible antimalarial chemotherapy. Molecular docking study was first conducted, after which remarkable compounds were submitted for molecular dynamic (MD) simulations studies. RESULTS: From a total of 38 Plasmodium-cidal compounds docked with confirmed Plasmodium falciparum protein drug targets [plasmepsin II (PMII), histo-aspartic protein (HAP) and falcipain-2 (FP)], two pentacyclic triterpene, cucurbitacin B and 3 beta-O-acetyl oleanolic acid showed high binding affinity relative to artesunate. This implies their capacity to inhibit the three selected P. falciparum target proteins, and consequently, antimalarial potential. From the MD simulations studies and binding free energy outcomes, results confirmed that the two compounds are stable in complex with the selected antimalarial targets; they also showed excellent binding affinities during the 100 ns simulation. CONCLUSION: These results showed that cucurbitacin B and 3 beta-O-acetyl oleanolic acid are potent antimalarials and should be considered for further studies.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Ácido Oleanólico , Plasmodium , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Terpenos/farmacologia , Terpenos/uso terapêutico , Simulação de Acoplamento Molecular , Ácido Oleanólico/uso terapêutico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico
12.
Acta Trop ; 245: 106982, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406792

RESUMO

Green nanotechnology has recently attracted a lot of attention as a potential technique for drug development. In the present study, silver nanoparticles were synthesised by using Sargassum tenerrimum, a marine seaweed crude extract (Ag-ST), and evaluated for antimalarial activity in both in vitro and in vivo models. The results showed that Ag-ST nanoparticles exhibited good antiplasmodial activity with IC50 values 7.71±0.39 µg/ml and 23.93±2.27 µg/ml against P. falciparum and P. berghei respectively. These nanoparticles also showed less haemolysis activity suggesting their possible use in therapeutics. Further, P. berghei infected C57BL/6 mice were used for the four-day suppressive, curative and prophylactic assays where it was noticed that the Ag-ST nanoparticles significantly reduced the parasitaemia and there were no toxic effects observed in the biochemical and haematological parameters. Further to understand its possible toxic effects, both in vitro and in vivo genotoxicological studies were performed which revealed that these nanoparticles are non-genotoxic in nature. The possible antimalarial activity of Ag-ST may be due to the presence of bioactive phytochemicals and silver ions. Moreover, the phytochemicals prevent the nonspecific release of ions responsible for low genotoxicity. Together, the bio-efficacy and toxicology outcomes demonstrated that the green synthesized silver nanoparticles (Ag-ST) could be a cutting-edge alternative for therapeutic applications.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Nanopartículas Metálicas , Sargassum , Alga Marinha , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Prata/farmacologia , Prata/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plasmodium falciparum , Camundongos Endogâmicos C57BL , Plasmodium berghei , Malária Falciparum/tratamento farmacológico , Compostos Fitoquímicos/farmacologia
13.
Biomed Res Int ; 2023: 4693765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284030

RESUMO

In Cameroon, malaria is still the cause of several deaths yearly and leading to the continued search for new potent leads to fight against Plasmodium falciparum. Medicinal plants like Hypericum lanceolatum Lam. are introduced in local preparations for the treatment of affected people. The bioassay-guided fractionation of the crude extract of the twigs and stem bark of H. lanceolatum Lam. led to the identification of the dichloromethane-soluble fraction as the most active (with 32.6% of the parasite P. falciparum 3D7 survival) which was further purified by successive column chromatography to obtain four compounds identified by their spectrometric data as two xanthones 1,6-dihydroxyxanthone (1) and norathyriol (2) and two triterpenes betulinic acid (3) and ursolic acid (4). In the antiplasmodial assay against P. falciparum 3D7, the triterpenoids 3 and 4 displayed the most significant potencies with IC50 values of 2.8 ± 0.8 µg/mL and 11.8 ± 3.2 µg/mL, respectively. Furthermore, both compounds were also the most cytotoxic against P388 cell lines with IC50 values of 6.8 ± 2.2 µg/mL and 2.5 ± 0.6 µg/mL, respectively. Further insights on the inhibition method of the bioactive compounds and their drug-likeness were obtained from their molecular docking and ADMET studies. The results obtained help in identifying additional antiplasmodial agents from H. lanceolatum and support its use in folk medicine for the treatment of malaria. The plant might be considered as a promising source of new antiplasmodial candidates in new drug discovery.


Assuntos
Antimaláricos , Clusiaceae , Hypericum , Malária Falciparum , Malária , Triterpenos , Humanos , Antimaláricos/química , Hypericum/química , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Malária/parasitologia , Triterpenos/farmacologia , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Bioensaio
14.
BMC Complement Med Ther ; 23(1): 211, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370061

RESUMO

BACKGROUND: Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds. METHODS: Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423. RESULTS: The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56 µg/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63 µg/mL. All extracts, fractions, and isolated compounds demonstrated no cytotoxicity against Raw cell lines with CC50 > 250 µg/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000 mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family. CONCLUSION: This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria.


Assuntos
Antimaláricos , Burseraceae , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Extratos Vegetais/química , Casca de Planta , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Folhas de Planta/química , Mamíferos
15.
BMC Complement Med Ther ; 23(1): 47, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788545

RESUMO

BACKGROUND: Malaria continues to be a global problem due to the limited efficacy of current drugs and the natural products are a potential source for discovering new antimalarial agents. Therefore, the aims of this study were to investigate phytochemical properties, cytotoxic effect, antioxidant, and antiplasmodial activities of Sonchus arvensis L. leaf extracts both in vitro and in vivo. METHODS: The extracts from S. arvensis L. leaf were prepared by successive maceration with n-hexane, ethyl acetate, and ethanol, and then subjected to quantitative phytochemical analysis using standard methods. The antimalarial activities of crude extracts were tested in vitro against Plasmodium falciparum 3D7 strain while the Peter's 4-day suppressive test model with P. berghei-infected mice was used to evaluate the in vivo antiplasmodial, hepatoprotective, nephroprotective, and immunomodulatory activities. The cytotoxic tests were also carried out using human hepatic cell lines in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. RESULT: The n-hexane, ethyl acetate, and ethanolic extracts of S. arvensis L. leaf exhibited good in vitro antiplasmodial activity with IC50 values 5.119 ± 3.27, 2.916 ± 2.34, and 8.026 ± 1.23 µg/mL, respectively. Each of the extracts also exhibited high antioxidant with low cytotoxic effects. Furthermore, the ethyl acetate extract showed in vivo antiplasmodial activity with ED50 = 46.31 ± 9.36 mg/kg body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with P. berghei. CONCLUSION: This study highlights the antiplasmodial activities of S. arvensis L. leaf ethyl acetate extract against P. falciparum and P. berghei as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. These results indicate the potential of Sonchus arvensis L. to be developed into a new antimalarial drug candidate. However, the compounds and transmission-blocking strategies for malaria control of S. arvensis L. extracts are essential for further study.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Sonchus , Humanos , Animais , Camundongos , Antimaláricos/uso terapêutico , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Malária/tratamento farmacológico , Etanol , Malária Falciparum/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
16.
BMC Complement Med Ther ; 23(1): 12, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653791

RESUMO

BACKGROUND: Drug resistance exists in almost all antimalarial drugs currently in use, leading to an urgent need to identify new antimalarial drugs. Medicinal plant use is an alternative approach to antimalarial chemotherapy. This study aimed to explore potent medicinal plants from Prabchompoothaweep remedy for antimalarial drug development. METHODS: Forty-eight crude extracts from Prabchompoothaweep remedy and its 23 plants ingredients were investigated in vitro for antimalarial properties using Plasmodium lactate dehydrogenase (pLDH) enzyme against Plasmodium falciparum K1 strain and toxicity effects were evaluated in Vero cells. The plant with promising antimalarial activity was further investigated using gas chromatography-mass spectrometry (GC-MS) to identify phytochemicals. Antimalarial activity in mice was evaluated using a four-day suppressive test against Plasmodium berghei ANKA at dose of 200, 400, and 600 mg/kg body weight, and acute toxicity was analyzed. RESULTS: Of the 48 crude extracts, 13 (27.08%) showed high antimalarial activity against the K1 strain of P. falciparum (IC50 <  10 µg/ml) and 9 extracts (18.75%) were moderately active (IC50 = 11-50 µg/ml). Additionally, the ethanolic extract of Prabchompoothaweep remedy showed moderate antimalarial activity against the K1 strain of P. falciparum (IC50 = 14.13 µg/ml). Based on in vitro antimalarial and toxicity results, antimalarial activity of the aqueous fruit extract of Terminalia arjuna (IC50 = 4.05 µg/ml and CC50 = 219.6 µg/ml) was further studied in mice. GC-MS analysis of T. arjuna extract identified 22 compounds. The most abundant compounds were pyrogallol, gallic acid, shikimic acid, oleamide, 5-hydroxymethylfurfural, 1,1-diethoxy-ethane, quinic acid, and furfural. Analysis of the four-day suppressive test indicated that T. arjuna extract at dose of 200, 400, and 600 mg/kg body weight significantly suppressed the Plasmodium parasites by 28.33, 45.77, and 67.95%, respectively. In the acute toxicity study, T. arjuna extract was non-toxic at 2000 mg/kg body weight. CONCLUSIONS: The aqueous fruit extract of T. arjuna exerts antimalarial activity against Plasmodium parasites found in humans (P. falciparum K1) and mice (P. berghei ANKA). Acute toxicity studies showed that T. arjuna extract did not show any lethality or adverse effects up to a dose of 2000 mg/kg.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plantas Medicinais , Humanos , Chlorocebus aethiops , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Plantas Medicinais/química , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Células Vero , Malária Falciparum/tratamento farmacológico , Peso Corporal
17.
Artigo em Inglês | MEDLINE | ID: mdl-36651464

RESUMO

The use of herbal tea with Artemisia annua by travelers and traditional communities in Africa has increased in recent years as a supposed form of malaria prophylaxis, although its use is not recommended due to lack of efficacy. The risk of severe malaria complications that can lead to death is real regarding said behavior, and awareness needs to be raised. We report a case of severe Plasmodium falciparum malaria imported in the Amazon rainforest by a traveler returning from Cameroon who treated himself with Artemisia annua herbal tea.


Assuntos
Antimaláricos , Artemisia annua , Malária Falciparum , Malária , Chás de Ervas , Humanos , Camarões , Guiana Francesa , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
18.
Artigo em Inglês | MEDLINE | ID: mdl-36565667

RESUMO

Nearly half of the world's population is at risk of being infected by Plasmodium falciparum, the pathogen of malaria. Increasing resistance to common antimalarial drugs has encouraged investigations to find compounds with different scaffolds. Extracts of Artocarpus altilis leaves have previously been reported to exhibit in vitro antimalarial activity against P. falciparum and in vivo activity against P. berghei. Despite these initial promising results, the active compound from A. altilis is yet to be identified. Here, we have identified 2-geranyl-2', 4', 3, 4-tetrahydroxy-dihydrochalcone (1) from A. altilis leaves as the active constituent of its antimalarial activity. Since natural chalcones have been reported to inhibit food vacuole and mitochondrial electron transport chain (ETC), the morphological changes in food vacuole and biochemical inhibition of ETC enzymes of (1) were investigated. In the presence of (1), intraerythrocytic asexual development was impaired, and according to the TEM analysis, this clearly affected the ultrastructure of food vacuoles. Amongst the ETC enzymes, (1) inhibited the mitochondrial malate: quinone oxidoreductase (PfMQO), and no inhibition could be observed on dihydroorotate dehydrogenase (DHODH) as well as bc1 complex activities. Our study suggests that (1) has a dual mechanism of action affecting the food vacuole and inhibition of PfMQO-related pathways in mitochondria.


Assuntos
Antimaláricos , Artocarpus , Chalconas , Malária Falciparum , Humanos , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artocarpus/química , Artocarpus/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Malatos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Malária Falciparum/tratamento farmacológico , Mitocôndrias/metabolismo , Quinonas/farmacologia
19.
J Infect Dev Ctries ; 16(11): 1768-1772, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36449650

RESUMO

INTRODUCTION: Malaria is a significant global health concern and adversely affects people in developing countries including Bangladesh. The causative agent Plasmodium falciparum is resistant to several currently available anti-malarial drugs, such as mefloquine, chloroquine, and artemisinin-based combination therapy (ACT), and this has been a major global challenge towards the control of the disease. There is urgent need for novel anti-malarial chemotherapeutic agents. METHODOLOGY: The present study aimed to evaluate antimalarial activity of methanolic extracts of three Bangladeshi medicinal plants- Acorus calamus, Dichapetalum gelonioides and Leucas aspera - against both chloroquine sensitive (3D7) and resistant (Dd2) strains of P. falciparum. Histidine-rich protein 2 (HRP2) based ELISA was used to evaluate the in vitro inhibitory activity of the extracts. RESULTS: D. gelonioides extract showed moderate (IC50 = 19.15 µg/mL) and promising activity (IC50 = 10.43 µg/mL) against 3D7 and Dd2 strains respectively. A. calamus remained inactive against both 3D7 (IC50 = 72.29 µg/mL) and Dd2 strain (IC50 = 67.81 µg/mL). L. aspera initially remained inactive against 3D7 strain (IC50 = 60.51 µg/mL), but displayed promising activity (IC50 = 7.693) against Dd2 strain. CONCLUSIONS: This is the first time these plant materials have been assessed for their in vitro antimalarial properties. It is pivotal to conduct further phytochemical analysis of D. gelonioides and L. aspera to evaluate the presence of potential novel antimalarial drug compounds.


Assuntos
Acorus , Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum , Cloroquina , Malária Falciparum/tratamento farmacológico
20.
Rev Soc Bras Med Trop ; 55: e0590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36169491

RESUMO

BACKGROUND: Based on the current need for new drugs against malaria, our study evaluated eight beta amino ketones in silico and in vitro for potential antimalarial activity. METHODS: Using the Brazilian Malaria Molecular Targets (BraMMT) and OCTOPUS® software programs, the pattern of interactions of beta-amino ketones was described against different proteins of P. falciparum and screened to evaluate their physicochemical properties. The in vitro antiplasmodial activities of the compounds were evaluated using a SYBR Green-based assay. In parallel, in vitro cytotoxic data were obtained using the MTT assay. RESULTS: Among the eight compounds, compound 1 was the most active and selective against P. falciparum (IC50 = 0.98 µM; SI > 60). Six targets were identified in BraMMT that interact with compounds exhibiting a stronger binding energy than the crystallographic ligand: P. falciparum triophosphate phosphoglycolate complex (1LYX), P. falciparum reductase (2OK8), PfPK7 (2PML), P. falciparum glutaredoxin (4N0Z), PfATP6, and PfHT. CONCLUSIONS: The physicochemical properties of compound 1 were compatible with the set of criteria established by the Lipinski rule and demonstrated its potential as a drug prototype for antiplasmodial activity.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Glutarredoxinas/uso terapêutico , Humanos , Cetonas/farmacologia , Cetonas/uso terapêutico , Ligantes , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA